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Abstract A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In-
stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently
completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicro-
metre fraction of the aerosol in a real-time monitoring underground instrument: Mine testing focused on use of the monitor in
engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under vary-
ing ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between
the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a
correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R*>0.86 in all but
two cases. This differences in suspecfed to be due to variations from mine to mine in aspects such as mine atmospheric con-
tamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interfer-
ence from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and
allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas
of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering
evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows effi-
cient modification of mine ventilation, operator positioning and other work practices to reduce miners’ exposures without wait-
ing for laboratory analysis results.

Keywords real-time diesel particulate matter, total carbon, elemental carbon

Introduction

Conventional mine atmosphere measurements of
DPM in many mines around the world is of increasing
importance and has been measured systematically by
various approaches for a number of years. A real-time
DPM monitor has been developed on the base of the
successful PDM unit. The heart of the PDM is a
miniaturized direct mass measuring sensor that meas-
ures mine dust. The PDM was originally developed by
Rupprecht and Patashnick Co., Inc. (now Thermo
Fischer Scientific) under contract from the Center for
Disease Control and Prevention, National Institute for
Occupational Safety and Health (NIOSH).

The PDM is capable of measuring in near-real-time
many types of aerosols regardless of particle size,
chemical composition or refractive index. Currently a
size selective cyclone defines the respirable mass frac-

Releived: 25 April 2011
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tion that is of interest in the prevention of coal workers
pneumoconiosis. Other size selective devices could be
used to define size fractions of interest for other ap-
plications.

In collaboration with an ACARP funded project,
2005 to 2007 (Gillies and Wu, 2008) Thermo Fisher
Scientific and NIOSH undertook changes to the PDM
to convert it to a DPM particulate submicrometre
real-time monitoring underground instrument which
was named the D-PDM. NIOSH undertook calibration
or verification laboratory evaluation of the new unit’s
performance. Their Laboratory has also designed a
cyclone that cuts at 0.8 micron particulate size appro-
priate for a DPM monitor. The real-time DPM unit
continually reports levels of mine atmosphere submi-
crometre aerosol. The D-PDM results have been cor-
related by parallel SKC system DPM evaluations. A
phase of Australian robustness and engineering testing
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has been undertaken to ensure the instrument can ef-
fectively assist mine management.

Fig.1 illustrates the major components of the PDM
and D-PDM.

Display and buttons

Power take-off Electronics boards
connector =

Block with flow sensor

Air h Sample filter
orifice,temp and RH sensors &

Pump

Cap lamp TEOM

> mass sen

Sample inle g
Air/Electrical
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TEOM system battery { &

Fig.1 Major components of the PDM and D-PDM

The real-time D-PDM monitor has in the five years
period since the ACARP project been used in many
Australian mines and empowered and educated opera-
tors in the control of their environment. The monitor-
ing approach has application to all forms of diesel
powered mining. With its real-time atmospheric
monitoring ability, the D-PDM monitor has demon-
strated that it can be use as an engineering tool to
pin-point high DPM exposure zones such as those en-
countered in LW face moves or on development faces
using diesel ram cars. Isolation of high DPM concen-
tration zones allows efficient modification of work
practices to keep underground miners exposure within
shift length exposure regulations.

The PDM and D-PDM internally measure the true
particle mass of aerosol collected on its filter. Meas-
urements are insensitive to water spray as opposed to
optically based measurement approaches. The under-
ground mining industry has no real-time direct reading
atmospheric DPM monitor at present. A phase of Aus-
tralian mine robustness and engineering testing has
been undertaken to ensure the instrument can effec-
tively assist mine management. It has been shown that
the D-PDM monitor can be used as a tool to evaluate
the effectiveness of various currently available or un-
der development diesel exhaust management and con-
trol systems within the underground mine environment
during their normal operations and usages. Tests have
been undertaken at points of expected high atmos-
pheric DPM such as during LW face moves. The paper
discusses, through use of mine examples, how the
monitor has performed within the underground mine
environment in evaluating DPM during the various
phases of LW moves. The project has closely exam-
ined the influence of aspects of the mine ventilation
system. Results have been compared to alternative
industry pollutant measuring approaches. The out-
comes of the project demonstrate a new tool for un-

derstanding the atmosphere in the presence of DPM.

1 Ventilation considerations in handling
DPM

LW moves rely on use of high powered equipment
of Shield-Chock movers (chariots) and other powerful
machines that produces high levels of exhaust pollut-
ants of gases and DPM. Many Australian mines find it
a challenge to meet DPM “Target Limits” during all
phases of operational moves. “Target” limits used
generally follows the New South Wales Guidelines for
DPM of 0.1 mg/m’® Elemental Carbon or alternatively
a limit of 0.2 mg/m’ Submicron Particulate. Ap-
proaches adopted in Australian mines rely as a first
step on both ensuring there is enough air and optimi-
zation of the ventilation system design. Issies that
should be considered in optimizing the design include:

(1) Maximize air quantity where LW face equip-
ment recovery, movement or installation occurs.

(2) Have all moving equipment (at least loaded
machinery) travel in opposite direction to air flow.

(3) Ensure that air velocity is higher than machine
speed to ensure a plume of exhaust does not hang over
travelling equipment in situations where machinery
cannot be moved against airflow.

(4) Have parallel transport roads so that movement
occurs in a circuit of loaded machines travelling inbye
on one road and outbye on a parallel one.

(5) Ensure that miners are working upstream of
machinery and particularly machinery that is working
on faces loading or unloading and positioning.

(6) Divide available air so that the majority is pass-
ing along the headings used by loaded machinery.

(7) Monitor DPM with real-time instruments so that
points where “Target” limits are not being met are
identified and improvements are made during the cur-
rent LW move or planned for the next move.

2 Development of real-time personal diesel
particulate monitor

Mine atmosphere measurements of DPM in Austra-
lian mines have been measured systematically since
the early 2000s. Most initial atmospheric readings
have been taken on a shift average basis using SKC
sampling units. The SKC is derived from a US NIOSH
design and gives readings in the surrogate Total Car-
bon (TC) or Elemental Carbon (EC) units after labo-
ratory analysis procedures have been completed.

DPM=TC+Inorganics=
EC+Organic carbon (OC)+Inorganics

TC in mine testing is generally 80%. of DPM
(Volkwein, 2006).

Some DPM regulatory guidelines are starting to
emerge in Australia and the individual states are gen-
erally moving to acknowledge DPM limits in use in
the US in the early 2000’s of 0.2 mg/m’® submicrome-
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tre particulate matter, 0.16 mg/m’ TC particulate and
0.1 mg/m’ EC particulate. A few prescriptive mining
regulations are in force internationally such as those
applying to the US metalliferous mining industry from
May 2008 based on a DPM limit of TC particulate.

3 Monitoring of diesel particulate matter

31 MineA

Mine A testing found it was straight forward to
analyse results for arrival and departure times of diesel
machines at the face and see whether these matched
the arrival of the vehicle exhaust plume. Fig.2 exam-
ines one three hour period record of real-time DPM
readings as compared to heading air velocity and
Shield carrier speed. Close examination of results
from No.108 monitoring the DPM downstream of the
main gate (MG) and back road showed that when the
shield carriers travel in that in three cases they arrived
at the tail gate (TG) end of the face in advance of the
peak level of the DPM cloud. This indicated that the
carriers were generally travelling at higher average
speed than the air velocity.

—~30r
730 —— No.108 10 min
25¢ === No.108 30 min
20
157

1.0F

0.5 k‘
0 207

7:40 - 8:20 9:00
Time

D-PDM concentrition (mg/m

9:40 10:20
Fig.2 Observations of shield-chock carrier DPM over
a three hour period

However carrier No.1112 arrived slightly later indi-
cating slower machine travel speed than air velocity.
The time difference and the peak concentration depend
on the air velocity and Shield carriers’ travel speeds.
Put simply if the shield carrier travels at the same
speed as air velocity peak concentration will be ex-
tremely high and the carrier will arrive at the same
time as the peak. Note that the DPM data has a lag
time because it is presented as a rolling average con-
centration over the previous 10 min or 30 min.

3.2 MineB

Mine B monitored a highwall mine with no under-
ground mains headings. It was found over a number of
tests that 62% of DPM within the panel was generated
by Carriers hauling Shields in the gateroads and 38%
generated by vehicle movement along the LW face.
Air passing down the segregated belt gateroad reached
the face clean and could have been used to better ef-
fect on the face where operators were installing newly
arrived shields. When planning LW moves mines

should evaluate and review alternatives for ventilating
shield travel roads to the face. The DPM plots in Fig.3
show variability with the Dozer working as four
shields were installed. The difference between LW

Maingate (MG) and Tailgate (TG) plots clearly shows
contributions of the face Dozer.
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3.3 MineC

Fig.4 shows the influence of DPM make from diesel
activities at a LW face with outbye monitored levels
subtracted. The close match between time the chariots
and loader were operating in the face and monitored
pollution levels inbye is clearly seen.
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Fig.4 DPM and diesel equipment activities in Mine
C LW installation face

An audit was completed on sources of DPM within
the LW installation panel by strategic placement of the
DPM monitors. It was found that 25% was contributed
from outbye diesel activities in mains, 25% from die-
sel activities in panel the Travel Road, and 50% from
diesel activities within face areas. A good initiative in
this mine has been to limit the number of vehicles in
the panel by the use of a Tag Board and Traffic con-
troller at the panel travel road entrance. The diesel Tag
Board design should consider the diesel loading from
outbye mains diesel activities which account for up to
25% of the total diesel LW panel loading. Summary of
DPM levels from each shift at points monitored
throughout the panel showed increasing levels from
influence of additional equipment in series in the ven-
tilation circuit.

3.4 MineD :
Mine D tests on the recovery face were in a well
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ventilated situation with gateroad belt heading air di-
luting adequately DPM pollution from the gateroad
travel heading. An electric tracked “mule” moved
Shields along the face and did not add DPM pollution.
Fig.5 shows influence of DPM make at the installation
face with outbye monitored levels subtracted.
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Fig.5 Difference in outbye and inbye DPM in Mine
D LW installation face

3.5 MineE

Mine E examined one 2.5 hour period as a 37 tonne
Dozer was brought in to pull the first shield on recov-
ery a LW face as shown in Fig.6. About 51 m’/s of air
was measured on the LW recovery face. Between
14:45 and 15:32, the Dozer attempted to pull out the
first shield but was unsuccessful. It worked hard much
of the time at maximum engine power. Between 15:32
and 16:00 a Shield Carrier Chariot was chained to the
Dozer and together they successfully pulled the first
Shield while working hard. A general observation on
LW moves was that some high submicrometre aerosol
readings were recorded due to the large numbers of
diesel activities in working sections of the mine. This
was contributed to by frequent vehicle movements or
traffic jams. Miners should not be placed working in-
bye heavy vehicles working very hard such as the
dozer when pulling shields. For the LW move routes it
is best if vehicle travels against airflow direction.
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3.6 MineF

Mine F monitored a highwall mine with no under-
ground Mains headings. Ventilation quantity was high
and air entered the panel in a clean state.

The main diesel activities at LW installation face

and within the panel are an EIMCO delivering Shields
into face from MG side of face and a Shield Chariot
transporting units from portal to MG side of the in-
stallation face. A total of seven Shields were installed
during the survey period as shown in Fig.7. For the
seven peaks or higher levels of DPM, cycle time and
DPM make were identified and calculated. The DPM
makes varied from 7.6 to 14.8 g/cycle with cycle time
ranging from 25 to 54 minutes. This compared well
with other mines’ data. For example LW move from
one neighbouring mine shows DPM makes ranging
from 3.0 to 22.4 g/cycle and cycle times from 16 to 29
minutes for operations of Shield Chariots (arrived,
unloaded shields and departed) and EMICO 936 (into
face, repositioned Shields and out of face). The short
cycle times in the other mine were due to the Chariots
only needing to travel half the length of the LW panel.
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Fig.7 Submicrometre DPM of a chariot transporting
shield to installation face

3.7 Mine G

During the LW Move real-time DPM surveys at
Mine G, one of the D-PDM units was placed on board
the Chock Chariots to identify the DPM exposure lev-
els of chariot operators. Significant DPM levels were
recorded especially when the chariot was travelling in
new LW panel TG B Hdg with chock loaded. The high
DPM level exposure of the chariot operator in B Hdg
is contributed by the following causes: (1) Chariot was
working under load thus more exhaust generated. (2)
Chariot was travelling in the same direction as the
ventilation air flow thus reducing the effective air ve-
locity over the engine exhaust. (3) Chariot was block-
ing much of the cross-sectional area of the B Hdg thus
increasing airway resistance and forcing more air flow
through A Hdg and as a consequence leaving less air
available to dilute the exhaust from the Chariot.

A simplified Ventsim model was created to demon-
strate the last point with chariot travelling in TG B
Hdg. Fig.8 shows the effect of the Chariot in B Hdg on
the ventilation air split between A and B Hdgs.

A total of 60 m’/s was available in the TG between
A and B Hdgs and it was assumed that air split evenly
between A and B Hdgs initially near Mains. A restric-
tion of 67% of the cross-sectional area in the B Hdg by
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the Chariot loaded with a Shield was assumed. This
restriction has reduced the airflow in B Hdg from
30 m’/s down to 14.5 m’/s and air velocity decreased
from 2.0 m/s to 1.0 m/s. It should be noted that actual
air split between A and B Hdg near the installation
face was measured at 28 and 32 m’/s for A and B Hdgs
during the surveys.

Air quantity AHdg
Fix Q30 45.5 30.7 28.0

B Hdg
Fix Q30 14.5 29.3 320

Representing restriction from

Air velocity Chariot travelling in the B Hdg AHdg
FixQ2.0 31 2.1 1.9

BHdg
Fix Q2.0 1.0 20 22

Fig.8 Simplified ventsim model showing the effects of
Chariot travel on air split

A chariot took one hour to travel from B Heading
near the Recovery Face to the installation face which
is about 3.0 km (thus at an average speed of 0.83 m/s).
Therefore, a relative velocity of 0.17 m/s (about
2.5 m’/s with 14.5 m® area) across the Chariot’s engine
exhaust can be calculated. This small amount of air
available it had caused the built up of DPM around the
Chariot while it was travelling inbye in B Heading
with a shield which is evidenced by the high exposure
level measured by the D-PDM unit on board it.

3.8 MineH

Mine H completed an audit on sources of DPM
within a LW installation panel by strategically placing
the real-time DPM monitors at points as shown in Ta-
ble 1. DPM make values account for DPM monitored
value in air (mg/m’) and air quantity diluting the ex-
haust (m’/s). These values (mg/s) give a value that can
be compared for different equipment under varying
ventilation and other mine conditions.

Table1 Sources of DPM identified in the installation LW

panel in Mine H
. Sources  Concentra-
Location (ugls) tion (%) Comments
MG C & D Hdgs 3.03 18.6 Mains air at MG entrance
Borehole 0 0 Back of LW panel, fresh air
LW Face 4.77 29.2 Shunting Mule or LHDs
TG D Hdg 6.96 42.6 Shield carriers travel way
TG C Hdg 0 0 No diesel activity
Mains air; coffin seal &

1. 6
Leakages 57 ’ double doors
Measured total 16.32 100

4 Comparison of DPM results from paral-
lel SKC and D-PDM tests

It is appropriate to compare field results from the

real-time DPM monitor with another available meas-
uring instrument, the NIOSH developed SKC impactor
system. The SKC system delivers laboratory analysed
shift average results and not real-time results. During
investigations parallel underground SKC were taken
for comparison with the real-time DPM monitored
results. These samples came from the same mine at-
mosphere through careful use of a system of gaining a
discrete mine atmospheric sample with outlets for
real-time DPM and SKC monitors. Under the SKC
system the sample submicrometre fraction is deposited
on a filter after first passing through a respirable cy-
clone sampler and a 0.8 micrometre impactor that re-
moves most of the mineral fraction of the sample. The
sample filter is laboratory analysed.

Fig.9 shows a related set of results, namely those
with a total 81 parallel (taken by SKC and D-PDM
methods) samples taken from Mines A to HLW moves.
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Fig.9 Mine individual relationships between EC, TC and
Submicrometre DPM

Real-time DPM results (designated as D-PDM) are
compared with shift average SKC impactor determina-
tions of EC and TC particulate. Close correlations
were found in all cases (R* >0.94) for TC versus DPM.
All EC versus DPM correlations were good (R* >0.75).
Results also demonstrate that relationships (the slopes
of the individual mine relationships) vary between
mines. This difference is suspected to be due to varia-
tions between mines in for instance atmospheric con-
tamination, vehicle fleet variations, fuel type, engine
maintenance, engine combustion efficiency, engine
behaviour, or interference from other submicrometre
aerosol. Mine H has had separate real-time DPM sur-
veys undertaken on three occasions during LW moves
in 2007, 2010 and 2011. At each yearly survey parallel
samples were taken with SKC cassettes and EC and
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TC NIOSH 5040 analysis determined. Fig.10 shows
this mine’s individual relationships between EC or TC
and Submicrometre DPM from this survey data. Mine
H data exhibits excellent correlations between EC and
submicrometre DPM results for all three surveys un-
dertaken as shown in Fig.10(a). Comparisons similarly
between TC and submicrometre DPM relationships
shown in Fig.10(b) also show that all three of the rela-
tionships fit very closely.
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Fig.10 Mine H individual survey relationships between
EC, TC and submicrometre DPM

Fig.11 shows combined relationships from averag-
ing data from three surveys between EC and TC and
Submicrometre DPM for Mine H. Fig.12 shows com-
bined DPM results from all the mine test series (mines
A to H) compared with SKC impactor collection de-
terminations of EC and TC particulate shift average
results taken in the particular mine at the same time.
Combined mines’ relationships are close with R*=0.95
for EC compared with submicron DPM. Snmlar com-
bined mines’ relationships are also close with R*=0.96
for TC.
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Fig.11 Mine H combined relationships between EC
and TC against Submicrometre DPM
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Fig.12 Combined relationships for Eight mines, EC
and TC against and submicron DPM

Table 2 gives data from the eight mines including
number of parallel sample and D-PDM and NIOSH
5040 impactor EC and TC relationship determinations.
All EC versus DPM correlations were good (R*>0.86)
except for data from two mines. Close correlations
were found for all cases (R*>0.94) for TC versus DPM.
The results also demonstrate that relationships (the
slopes of the individual mine relationships) vary be-
tween mines. These differences, as stated previously,
are suspected due to variations between mines in air
contaminates, vehicle fleets, fuel type, engine mainte-
nance, engine combustion efficiency and behaviour, or
interference from other submicrometre aerosol.

There is international debate on the monitoring
question of whether submicrometre DPM, TC or EC
should be evaluated. The real-time DPM monitor un-
der discussion is the only one measuring the full sub-
micrometre matter. NIOSH recently has developed an
EC monitor that operates in real-time using a photo-
dector system. Various studies show that in the normal
mine atmosphere (with moderate loadings of respir-
able dust below statutory limits) the differences and
the potential levels of error between the three ap-
proaches for monitoring DPM are relatively minor
(Birch and Cary, 1996; Birch and Noll, 2004; Dabill,
2005).

Table 2 Summary of individual mine and combined rela-
tionships between EC or TC and Submicron DPM

Mine No.of EC/Submicron 2 TC/Submicron 2
samples factor factor

A 6 0.645 0.97 0.865 0.99
B 6 0.816 0.98 0.968 0.99
C 7 0.684 0.98 0.827 0.97
D 7 0.450 0.75 0.885 0.98
E 22 0.783 0.98 1.012 0.99
F 6 0.778 0.79 0.954 0.94
G 9 0.724 0.99 0.919 0.94
H 18 0.752 0.86 0.919 0.99
Combined 81 0.749 0.95 0.932 0.96
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S Conclusions

The outcome of a DPM real-time monitoring exer-
Cise is that objective testing over different mines and
Comparisons with SKC impactor shift average moni-
toring leads to the conclusion that the real-time DPM
unit provides useful results. The importance of venti-
lation has been discussed. The principal industrial ap-
plication of the unit is to give greater understanding in
real-time on DPM levels in mine environments and
particularly in engineering evaluation exercises. The
baper has discussed how the monitor has performed
within the underground mine environment in evalua-
tions of LW moves and has closely examined the in-
fluence of aspects of the mine ventilation system on
underground DPM pollution.
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